Student-t Process Regression with Student-t Likelihood
نویسندگان
چکیده
Gaussian Process Regression (GPR) is a powerful Bayesian method. However, the performance of GPR can be significantly degraded when the training data are contaminated by outliers, including target outliers and input outliers. Although there are some variants of GPR (e.g., GPR with Student-t likelihood (GPRT)) aiming to handle outliers, most of the variants focus on handling the target outliers while little effort has been done to deal with the input outliers. In contrast, in this work, we aim to handle both the target outliers and the input outliers at the same time. Specifically, we replace the Gaussian noise in GPR with independent Student-t noise to cope with the target outliers. Moreover, to enhance the robustness w.r.t. the input outliers, we use a Student-t Process prior instead of the common Gaussian Process prior, leading to Student-t Process Regression with Student-t Likelihood (TPRT). We theoretically show that TPRT is more robust to both input and target outliers than GPR and GPRT, and prove that both GPR and GPRT are special cases of TPRT. Various experiments demonstrate that TPRT outperforms GPR and its variants on both synthetic and real datasets.
منابع مشابه
Gaussian process regression with Student-t likelihood
In the Gaussian process regression the observation model is commonly assumed to be Gaussian, which is convenient in computational perspective. However, the drawback is that the predictive accuracy of the model can be significantly compromised if the observations are contaminated by outliers. A robust observation model, such as the Student-t distribution, reduces the influence of outlying observ...
متن کاملFiltering Outliers in Bayesian Optimization
Jarno Vanhatalo, Pasi Jylänki, and Aki Vehtari. Gaussian process regression with Student-t likelihood. In NIPS, pages 1910–1918, 2009. Amar Shah, Andrew Gordon Wilson, and Zoubin Ghahramani. Student-t processes as alternatives to Gaussian processes. In AISTATS, pages 877–885, 2014. Anthony O'Hagan. On outlier rejection phenomena in Bayes inference. Journal of the Royal Statistical Society. Seri...
متن کاملRobust Gaussian Process Regression with a Student-t Likelihood
This paper considers the robust and efficient implementation of Gaussian process regression with a Student-t observation model, which has a non-log-concave likelihood. The challenge with the Student-t model is the analytically intractable inference which is why several approximative methods have been proposed. Expectation propagation (EP) has been found to be a very accurate method in many empi...
متن کاملA bootstrap estimator for the Student-t regression model
The Student-t regression model suffers from monotone likelihood. This means that the likelihood achieves its maximum value at infinite values of one or more of the parameters, in this case the unknown degrees of freedom. This leads to problems when one uses iterative algorithms to locate the solutions to the non-linear equations generated by the likelihood. Fonseca et al. (2008) deal with this ...
متن کاملPreliminary test almost unbiased ridge estimator in a linear regression model with multivariate Student-t errors
In this paper, the preliminary test almost unbiased ridge estimators of the regression coefficients based on the conflicting Wald (W), Likelihood ratio (LR) and Lagrangian multiplier (LM) tests in a multiple regression model with multivariate Student-t errors are introduced when it is suspected that the regression coefficients may be restricted to a subspace. The bias and quadratic risks of the...
متن کامل